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Steady-state laminar heat transfer mechanisms of polymeric liquids flowing across a 
horizontal cylinder or past a sphere of different wall temperatures have been analyzed. The 
uniquely transformed conservation equations of this nonsimilar problem have been solved 
with an implicit finite difference method up to the point of boundary layer separation. Of 
interest are the effects of the power-law index, the buoyancy parameter, and a generalized 
Prandtl number on the local skin friction coefficient and the local Nusselt number. Both the 
dimensionless skin friction group and the heat transfer group increase with higher buoyancy 
effects for any power-law fluid. Furthermore, increasing the buoyancy force will delay the 
point of flow separation. Dilatant fluids exhibit a distinctively different heat transfer 
behavior than pseudoplastics in the vicinity of the stagnation point. Higher Prandtl numbers 
generate lower skin friction and larger heat transfer coefficients. 

Keywords: skin friction/heat transfer group; combined free-forced convection, non- 
Newtonian fluid; horizontal cylinder/sphere; heating/cooling 

Introduction 

Of basic interest in fluid mechanics and heat transfer are steady 
temperature and pressure-driven flows of non-Newtonian fluids 
across horizontal cylinders or spheres. Applications for such 
systems can be found in industries processing molten plastics, 
polymers, food stuff, or slurries. Thus considerable attention has 
been directed toward major aspects of this coupled, nonlinear 
boundary layer problem 1-s. For example, Acrivos, Shah, and 
Peterson 2 analyzed forced convection heat transfer between a 
horizontal cylinder and a power-law fluid of infinitely large 
Prandtl numbers. Kim, Jeng, and DeWitt 3, as other researchers 
before them, employed a Merk series expansion to solve the 
forced convection problem for a horizontal cylinder and non- 
Newtonian fluids. Recently, Nakayama and Koyama 4 used the 
von Karman integral method to obtain an asymptotic solution 
for forced convection in high non-Newtonian Prandtl number 
fluids. The mixed thermal convection problem for a horizontal 
cylinder and for a sphere submerged in a Newtonian fluid has 
been solved by Mucoglu and Chens and Chen and Mucoglu 6, 
respectively. 

In this paper, combined free and forced convection from a 
horizontal cylinder or a sphere to power-law fluids has been 
investigated. Both heated and cooled isothermal surfaces have 
been considered to study the effects of aiding and opposing 
buoyancy flows in relation to the upward forced convection 
stream. The distributions of the dimensionless skin friction and 
heat transfer groupings are computed for the region of attached 
boundary layer flows. Empirical correlations have been used for 
the associated outer flow velocities. The coupled nonlinear 
partial differential equations for non-Newtonian fluid flow and 
combined heat transfer have been reduced with a powerful 
nonsimilar transformation and then solved using an implicit 
finite difference scheme. This approach to the problem solution 

* To whom all correspondence should be addressed. 

© 1988 Butterworth Publishers 

182 

is more accurate and more efficient than conventional methods 
such as power series expansions, weighted residual methods, or 
direct finite differencing. 

Analysis 

The system schematics and a suitable coordinate system are 
given in Figure 1. The distance r(x) needed for the sphere is 
r(x) = R sin(x/R). The surface of the cylinder or sphere of radius 
R is maintained at a constant temperature Tw. The isothermal 
wall temperature may be above or below T~, depending upon 
the operational mode of heating (Z = 1) or cooling (Z = - 1). 
The gravitational force is acting downward while the uniform 
forced flow (uo~, To) is moving upward. Natural convection will 
assist the forced boundary layer flow for heated surfaces 
(Tw>T~) and will retard the forced flow in the cooled 
cylinder/sphere case, i.e., when Tw< 7"=. The analysis is also 
valid for downward flow; however, the x-coordinate is then 
measured from the upper stagnation point. 

Using the standard power-law viscosity model and the 
Boussinesq assumption, the boundary layer equations for 
steady laminar flow without wake effects and cyfinder end effects 
are (Figure 1) 

O(ru) ~ y )  
~x I- =0  (1) 

~u cqu du e , , x 
u~-+v ~-- = ue-7-- +Z@JT-  T® Isin- ~ 

Ox o y  O X  Jx 

K o (10=1 " - '  0u) 
+-~ ~y \lOy [ ~y (2) 

and 

OT OT 02T u~+v~=~  Oy ~ (3) 
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Figure 1 System schematics and coordinates 

The associated boundary conditions are 

u = v = 0  and T = T .  at y = 0  (4a) 

and 

u=ue(x ) and T = T ~  a t y = ~  (4b) 

where 

ue = 0.92(x--'~-0.13 l(X'~ 3 (5) 
u® \RJ  \R,/  

for a cylinder in crossflows s and 

uc 1.5 -0.4371 +0.1481 -0.0423 (6) 
U~ 

for a sphere 9. The empirical edge velocity distribution (6) has 
been measured with Newtonian fluids, whereas Equation 5 has 
been developed for both types of fluids. It is assumed that both 
equations hold for 0.5~<n~< 1.6. 

With the stream-function approach 

u = - - -  (7a) 
r 8y 

I 8~, 
v . . . .  (7b) 

r cOx 

and the transformations 

X =~ (8a) 

Re I/(n+l) Ue (2-n)/(n+l) y 

T-T~  
0(¢, ,fl = - -  (8c) 

Tw-T~ 
. / ~ "~'l("+')/u='~('-'")/("+') 

(8d) 

the governing equations, Equations 1-3, are reduced to 

tiE"l" - '  t") '  +  (Otf" + m(o¢ 1 - f 

[ , dF' ,, =-ZO2Q(O+~tF --~--F ~ )  (9) 

E(¢)p____~ (7' +),(¢)FO'=¢(F' 00-0'8F'~(3¢ t~¢ ] (10) 

The transformations are based on scale analysis and non- 
dimensionalization of the governing equations (of. Ref. 10). The 
generalized Reynolds number is 

pu 2-"R" 
Re = - -  (1 la) 

K 

and the generalized Prandtl number is 

P r =  u°~R Re - 21("+I) (llb) 
Gt 

The new coefficients in Equations 9 and 10 are defined as 

duo 
A ( O = - - - -  (12a) 

u c d~ 

1 [2n-l\A._ ~ dr 
)' (~)= n-+--1 + t - ~ ] - ) ( ¢ ) + r  ~ -  for the sphere (12h) 

Notation 
ef Local skin friction coefficient 
F Dimensionless stream function 
g Gravitational acceleration 
Gr Generalized Grashof number 
h Local heat transfer coefficient 
K Fluid consistency index for power-law fluid 
k Thermal conductivity 
Nu Local Nusselt number 
n Flow index for power-law fluid 
Pr Generalized Prandtl number 
Re Generalized Reynolds number 
R Radius of cylinder or sphere 
r Distance from axis of symmetry to body surface, 

r = R sin ~b 
T Temperature 
u Velocity component in x-direction 
v Velocity component in y-direction 
x Streamwise coordinate measured along surface from 

forward stagnation point 

Y 
Z 

Coordinate normal to surface 
Dimensionless parameter, Z = 1 for heated and 
Z = - 1 for cooled submerged body 

Greek symbols 
~t Thermal diffusivity 
fl Thermal expansion coefficient 
)7 Dimensionless parameter 
2 Buoyancy parameter 
0 Dimensionless temperature 
p Density of fluid 
z Shear stress 

Dimensionless parameter, ~ = x/R 
4) Angular coordinate 
~, Stream function 

Subscripts 
e Boundary layer edge condition 
oo Ambient condition 
w Wall condition 
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Table 1 Data comparison of the skin friction group, 
½cfRe 1/(n+1), for forced convection across a horizontal, heated 
cylinder 

x n=0.52 n=1.6  

R Kim et al. 3 Present method Kim et al. 3 Present method 

0.1 0.2445 0.2445 0.09869 0.09884 
0.2 0.3902 0.3902 0.1360 0.1365 
0.4 0.6095 0.6099 0.3030 0.3043 
0.6 0.7659 0.7685 0.4561 0.4569 
0.8 0.8661 0.8718 0.5680 0.5679 
1.0 0.9015 0.9174 0.6169 0.6138 
1.2 0.8859 0.8995 0.5825 0.5774 
1.4 0.7901 0.8067 0.4571 0.4469 
1.5 0.6791 0.7252 0.3462 0.3440 

and 
y(~) = 1 /2n  - 1\ 

t - ( -~-~)A(~)  for the cylinder (12c) 
n--l- 1 

f~" "  ~ sin 
(¢) = (ue--~)2 (12d) 

E(~) = (ue/uoo) 3(i - n)/(n + l)~(n- 1)/(n + 1) (12e) 

and the buoyancy parameter is 

Gr 
J. Re2/(2 _. ) (13a) 

where 

Gr = (K/p) 2/("- 2)gfl(T w-  Too)R (2 +,)/(2 -,) (13b) 

is the generalized Grashof number. 
The transformed boundary conditions (4a) and (4b) read 

OF =0  at rl=O: V'(¢,0)=0, ? ( ~ ) F ( ~ , 0 ) + ~ -  = ° - "  

and 0(~,0)= 1 (14a) 

at~l=oo: F' (~ ,oo)=l  and 0 ( ~ , ~ ) = 0  (14b) 

With the definition of the local skin friction coefficient, 
c I = 2Zw/pU 2, a dimensionless skin friction group (SFG) can be 
formed as 

/U \3nl(n+l) 
½ c i . e ' " ÷ "  = (15) 

Similarly, with the definition of the local Nusselt number, 
Nu = hR/k,  a heat transfer group (HTG) is formed as 

N u R e - I / ( , + I ) = _  - i / ( . + ~ ) [ ~ U e  (2-n)/(n+l)o; 0 
\ / luoo I ( , , )  (6) 

N u m e r i c a l  s o l u t i o n  m e t h o d  

The system of coupled nonlinear equations (9) and (10) subject 
to the boundary edge and boundary conditions (5) or (6) and 
(14a), (14b), respectively, are solved using Keller's box method 
outlined in Cebeci and Bradshaw lI. The governing equations 
are first written in the form of a first-order system by introducing 
new unknown functions of q-derivatives. The functions and 
their derivatives in the first-order differential equations are then 
approximated by centered difference quotients and averaged at 
the midpoints of grid rectangles in the (~, ~/)-domain or the 
segments in the ~ and r/coordinates, as required. The resulting 

nonlinear difference equations together with the finite difference 
approximation of the boundary conditions are solved iteratively 
using Newton's linearization method. The accuracy is of the 
order of (AO 2 or (Aq) 2, which can be improved to fourth-order 
accuracy using Richardson extrapolation. A two-dimensionally 
nonuniform mesh is required, which is extremely fine in the 
vicinity of the stagnation point and very fine near the separation 
point, the body surface, and the boundary layer edge. Although 
Keller's box method is a parabolic code, it accurately predicts 
the angle of boundary layer separation as previously tested 
under more severe flow conditions 12. 

R e s u l t s  a n d  d i s c u s s i o n  

The lack of experimental data sets for the present system 
required comparisons of our reduced computer simulation 
model with special case studies found in the open literature. 
Table 1 lists values of the predicted SFG and results obtained by 
Kim, Jeng, and DeWitt a for forced convection heat transfer of a 
non-Newtonian fluid (n=0.52 and 1.6) across a horizontal 
cylinder. The agreement is very good in the front region of the 
cylinder, i.e., when x /R  < 1.0. However, for larger x /R  values the 
results of the Merk series expansion 3 become somewhat 
erroneous, especially for pseudoplastics (n < 1.0). In a separate 
simulation study we reproduced exactly the same graphs as 
found in the literature showing SFG and HTG profiles for 
combined free-forced convection heat transfer of a Newtonian 
fluid across a horizontal cylinder 5 and about a sphere 6. 

Of interest in this paper are the angular distributions of 
Equation 15, SFG=½cIRe 1/("÷1), and Equation 16, H T G =  
Nu/Re 1/*" * ~, for mixed thermal convection of power-law fluids. 
Their effects with the buoyancy force as a parameter are shown 
in Figures 2-5. Figure 2 depicts the variation of SFG along the 
heated cylinder surface for a generalized Prandtl number of 
P r =  100. Clearly, pseudoplastics generate higher and dilatant 
fluids lower wall shear stresses than Newtonian fluids. Natural 
convection aiding the forced flow increases SFG and helps to 
delay boundary layer separation (SFG=0). Figure 3 indicates 
that both the power-law index n and the buoyancy parameter 2 
are less influential on the SFG distribution for spheres than for 
horizontal cylinders (Figure 2). Figures 4 and 5 show the local 
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Figure 4 Angular distribution of HTG for a heated cylinder 

HTG for heated cylinders and spheres, respectively. For 
Newtonian fluids (n = 1.0), the local generalized Nusselt number 
decreases monotonously along the curved surfaces. The unique 
thermal behavior of non-Newtonian fluids (n # 1.0) near the 
stagnation point is similar to that for the vertical cylinder 
configuration 1°. Pseudoplastics (n<l.0) reach rapidly a 
maximum in HTG(~b), and then, similar to Newtonian fluids, 
the HTG decreases gradually. In contrast, the HTG for dilatant 
fluids reduces very rapidly in the vicinity of ~ = 0 and then 
follows, after a point of inflection, the general trend of HTG(~b) 
for Newtonian fluids. The significantly different behavior of the 
two types of power-law fluids near the stagnation point can be 
explained as follows. As can be deduced from Equation 16, 

HTG ~ ~(t -,,)/(, + 1), if(l, 0) 

which implies that for ~ ~ 0 

{0 f o r n < l . 0  
HTG ~ for n > 1.0 

provided that 0' is well behaved at the stagnation point. The 
thermal behavior of all fluids is quite similar for both bodies, 
although the influence of ~ is again larger for horizontal 
cylinders. 

An increase in Pr decreases the SFG and increases the HTG 
distributions for any fluid (cf. Figures 6(a), (h) and 7(a), (b)). 
Higher values of Pr oc K/~ imply more viscous fluids, which 
reduces SFG oc 1/K. The opposite effect can be observed for the 
HTG profiles that shift upward with higher Prandtl numbers, 
because Pr oc l#t and fluids with smaller thermal diffusivities 
generate higher dimensionless temperature gradients at the wall. 

In various industrial applications the wall temperature is 
lower than the free-stream temperature, and hence it is of 
interest to analyze the effect of cooled cylinders or spheres on the 
SFG and HTG profiles (cf. Figures 8(a), 0a) and 9(a), (b)). 
Submerged bodies with Tw< To~ have lower SFG and HTG 
values. The trend is quite comparable to the effect of lowering 
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Figure 6(a) The effects of the generalized Prandtl number on SFG 
for a heated cylinder 
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Figure 6(b) The effects of the generalized Prandtl number on SFG 
for a heated sphere 
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Figure 7(a) The effects of the generalized Prandtl number on HTG 
for a heated cylinder 
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Figure 7(b) The affects of the generalized Prandtl number on HTG 
for a heated sphere 

the buoyancy parameter (cf. Figures 2-5). In these cases, forced 
convection is either retarded by the opposing buoyancy force 
(cooled cylinder/sphere) or relatively less enhanced by 
decreasing the buoyancy force (reduction of 2). As can be 
expected, the separation angle for opposing flow (Z = - I  in 
Figures 8(a) and 8(b)) is smaller than that of aiding flow 
(Z = 1.O). 
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1.6  

Two important wall variables, the local SFG and the local 
HTG, have been analyzed for mixed thermal convection of a 
power-law fluid flowing upward past a horizontal cylinder or 
sphere. The isothermal, submerged bodies are either heated 
where natural convection assists the forced flow or cooled where 
buoyancy retards the forced momentum transfer. In addition to 
the influence of heating (Z = 1) versus cooling (Z = - 1), the 
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Figure 9(b) Comparison of HTG for heated and cooled sphere 

effects of n, Pr, and 2 on SFG and HTG have been studied for 
both horizontal cylinders and spheres. 

In general, changes in all system parameters; i.e., Z, n, Pr, 
and/or 2, have a more pronounced dfect on SFG and HTG for 
horizontal cylinders than for spheres. The angular distribution 
of HTG for power-law fluids near the stagnation point is 
distinctively different from the heat transfer behavior of 
Newtonian fluids. Pseudoplastics exhibit a maximum for 
HTG(~b), whereas the local HTG for dilatant fluids reduces 
sharply near ~ =0  and then follows the behavior of HTG for 
Newtonian fluids. As expected, a cooled surface, like a decrease 
in 2, reduces the angle of boundary layer separation. Higher- 
Prandtl-number fluids decrease SFG values and increase the 
local heat transfer coefficient. 
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